
Turbocharging Database
Applications With TLists
by Jonathan Morgan

By handling data records in
memory data structures

rather than placing the burden on
a disk-based database, the speed of
some applications can be signifi-
cantly improved. Delphi provides
us with a superb tool for handling
groups of data records in memory:
the TList. This article describes
the basic construction and use of a
TList. Then we will use some TLists
along with supporting functions to
create a local in-memory database.

TList Basics
The Delphi TList is essentially an
array of pointers. However, TLists
differ from normal Pascal arrays.
For one thing they are dynamic, ie
the number of pointers they hold
can increase and decrease. Also, as
objects, they come complete with
methods for insertion, deletion and
sorting.

When I first heard of TLists I
thought they were going to be an
abstract Delphi implementation of
linked lists. Don’t make the same
mistake! As stated above, and as
you will see below, TLists are far
more akin to arrays.

As with other objects, TLists
must be created and freed. A good
place to do this is in the form create
destroy methods, see Listing 1. The
online help provides a good over-
view of the available TList proper-
ties and methods. However, here is
a quick summary with a few extra
comments for those interested in
the inner workings:
➣ Add(pointer) places a pointer

on to the end of a list. A pointer
can be to an object, a method, a
function or a variable. To add
objects to a list use
aList.Add(aObject) instruc-
tions. TList pointers will often
be to instantiated objects and in
this article our list of pointers
will be to the same object type.
TLists are not type-safe, but see

Jim Cooper’s article in Issue 9 if
you wish to make them so.
There is no technical reason,
however, why pointers to
different class types shouldn’t
exist in the same TList and
sometimes it is very useful.

➣ Capacity: setting this property
reserves or releases memory in
the TList. It’s not normally
worth worrying about unless
clock cycles are really impor-
tant and you want a list to
reserve memory in one hit.
Never set the capacity to a value
less than the number of items
on the list.

➣ Clear takes all the pointers off a
TList and sets the Count to 0.
Clear also sets the capacity to 0,
thereby releasing most of a
list’s memory. Don’t clear the
list after an aList.Capacity := n
instruction!

➣ Count holds the number of items
on the list and will always be
less than or equal to Capacity.

➣ Delete(Index) takes a pointer off
a list and moves all the higher
indexed pointers down one po-
sition with a call to System.Move
(which proves that TLists are
arrays, not linked lists).

➣ Insert(Index, Pointer) as you
might guess moves all the point-
ers from Index up one position
then puts the new pointer in the
gap.

➣ Items is the array of pointers
itself. It is not often directly
referenced, however, since the

shorter aList[n] instruction is
equivalent to aList.items[n].

➣ Free will release the memory
used by the list for its pointers.
It will not release what the
pointers point to, that is your
responsibility.

➣ IndexOf(pointer) returns the
list index where the pointer re-
sides, or -1 if the pointer is not
on the list. IndexOf will find the
pointer’s index with a sequen-
tial search through all the point-
ers in the list until a match is
found. That search can be quite
time consuming on large lists.

➣ Pack calls Delete(Index) on
pointers which are equal to nil.
It does not change the Capacity
(and thereby reduce the mem-
ory used by the list) even
though the name implies that it
will. Also, pointers will rarely
become nil unless your pro-
gram specifically makes them
so. Therefore, this function
should rarely need to be used.

➣ Remove(Pointer) essentially
does an aList.Delete(In-
dexOf(apointer)) where you
provide the pointer to delete.

➣ Sort(TSortCompare) will sort the
list of pointers with a Quicksort
function. Quicksort is an
undocumented function in the
Classes unit that can also be
used for purposes outside of
TLists. TSortCompare is a pointer
to the function that you
must provide to perform
comparisons in the sort.

procedure TForm1.FormCreate(Sender: TObject);
begin
 aList := TList.Create
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 aList.Free
end;

➤ Listing 1: Creating and destroying a TList

October 1996 The Delphi Magazine 47

Database Applications
Now we know how TLists are con-
structed and manipulated, but how
can we use them to turbocharge
database applications? That de-
pends on the application. The re-
quirements of one project I worked
on were to allow 40 operators to
enter up to 50,000 contact records
a month. Each contact could be
assigned to one or more catego-
ries. There were 1,000 categories to
chose from, presented in a stand-
ard outline component. The origi-
nal approach was to draw the
category outline by reading the
entire category table from the
database on each contact. Not
surprisingly, drawing the outline
simultaneously on even a few
screens took several seconds.
However, when it was found that
the customer would rarely be up-
dating the category table and that
updates would not need to be im-
mediately sent to the operators, we
turned to TLists to hold the data in
memory with the minimum of re-
source wastage. So, the category
data only had to be read in once a
day (on application startup) rather
than once per contact. The effect
was dramatic. As the project went
on more and more “administra-
tion” type database tables were
read into TLists on the application
start-up and the screen response
time became very fast.

So, when can and should we
spend a little extra time to put a
disk based table into a memory
based TList? First, remember that
once a table is loaded into memory,
changes by another user to the
original table will not automatically
be reflected locally. That point is
critical! Only store locally tables
that either rarely get updated, or
tables where a “flash shot” will suf-
fice (eg in printing). Second, it is
only worth doing the extra coding
if the table records are required
frequently or en masse. However,
even if your application doesn’t
meet these requirements you
should still find the way the dem-
onstration program uses TLists a
very useful insight into Delphi and
into memory management.

The demonstration program for
this article is loosely based around

the categories problem above. In
the demo we need to be able to
display the categories in an outline
in a pre-determined order and be
able to put the categories in a list-
box, ordered by description. Lastly
we want to be able to retrieve
records with a user specified ID,
outline position, or description.

The first job is to give the cate-
gory data table definition to the
program. Listing 2 defines an ob-
ject which matches the fields of the
database table in Figure 1. The next
job is to read the table’s contents
in. Listing 3 shows how to use SQL
to read the database table into a
TList upon form creation. All sim-
ple and straightforward so far, but
how can we use the table now that
it is in memory? We need to create
a few functions, based on our re-
quirements, to examine the TList.
For speed we need at least two
TLists, one that orders the records
by their outline position and

another that orders the records by
their descriptions. Secondly we
need a search routine to dig out
records with a requested index
value. The search routine could be
very easily achieved (see Listing 4)
with a small iterative routine. How-
ever, on this month’s disk you will
find that to make the search proc-
ess faster I wrote some recursive
binary search routines. Those rou-
tines required a third TList which
ordered the records by their
CategoryID values. To keep the
three TLists up together I put them
in a single container that controls
how records are added to the lists.
Rather than simply adding each
record on to the end of each list the
container makes sure that the
records get inserted into the
correctly ordered position. The
screen shot from the demo (Figure
2) shows the program in action.

With very little effort we have
created our own in-memory table.

Name Type Comment

CategoryID Numeric (8) Unique id number
OutlinePosition Numeric (8) Outline index number
OutlineParent Numeric (8) Parent’s outline index number
Description VarChar (40)

➤ Figure 1: Category table

➤ Figure 2

48 The Delphi Magazine Issue 14

Is It Worth It?
Some people might quite correctly
be thinking that if the SQL database
is good enough then it should be
holding our “lists” of records in
memory automatically. That is
very true! However, by taking some
of the database control into our
own program we can achieve the

following: minimal network traffic,
minimal server loading, minimal
memory requirements and maxi-
mum control over what is going on.
Further, the speed gains can be
very dramatic in both multi- and
single-user environments. On my
machine (120MHz Pentium with
32Mb RAM) with an Interbase

database, to fill an outline with
1,500 records took SQL 2.4 sec-
onds. That was with the database
table fully loaded into memory.
Loading the same outline from a
pre-loaded TList took 0.33 sec-
onds, one seventh of the time. That
ratio could be vastly higher on a
busy network. If you can make
some parts of an application seven
or more times more responsive
then it is definitely worth it!

A Few Final Hints
One way that we might consider
storing records in a list is to set the
list capacity to a very high number
and then store a record at, for
instance, its CategoryID position, ie

aList[aCategory.CategoryID] :=
 aCategory;

Whilst that method would work it
is somewhat memory hungry at
four bytes for every pointer
(whether the pointer is used or
not) and it would rarely be a good
solution.

Sometimes you know that all the
objects you put onto the TList
need to be freed when the TList is
freed. Those situations give us a
chance to demonstrate a classic
piece of polymorphism. The code
in Listing 5 will correctly free all the
objects in the list so long as all the
pointers are to valid TObject
descendants.

I sometimes hear the question,
“Is there an equivalent to
TStringList, but for integers?” The
simple answer to that is no. How-
ever, with a little casting we can use
TLists. The pointers in a TList need
not point to anything at all so we
can use the pointers to store num-
bers. To add a number use:

aList.add(Pointer(aLongInt));

To get a number use:

LongInt(aList[aIndex]);

Jonathan Morgan was last seen
heading for Belgium to do some
Delphi contract development and
can be contacted by email on
CompuServe 102247,2027

{this class matches the fields in the Database table}
TCategory = class
 CategoryID,
 OutLinePosition,
 OutLineParent : Longint;
 Description : string[40];
end;

➤ Listing 2: Category object

procedure TForm1.FormCreate(Sender: TObject);
var ACategory : TCategory;
begin
 {create the list}
 CategoryList := TList.Create;
 {then fill the list up with the records currently in the table}
 with Query1 do begin
 sql.clear;
 sql.add(’SELECT CATEGORYID, OUTLINEPOSITION, OUTLINEPARENT, ’+
 ’DESCRIPTION FROM CATEGORIES’);
 Open;
 while not eof do begin
 ACategory := TCategory.Create;
 with ACategory do begin
 CategoryID := Fields[0].AsInteger;
 OutlinePosition := Fields[1].AsInteger;
 OutlineParent := Fields[2].AsInteger;
 Description := Fields[3].AsString;
 end;
 CategoryList.Add(ACategory);
 Next;
 end;
 Close;
 end;
end;

➤ Listing 3: Reading a database table into a TList

function (SearchStr : String) : TCategory;
{assumes items in aList are valid pointers to TCategory objects}
var I: LongInt;
begin
 Result:=nil;
 I:=0;
 while (Result=nil) and (I<aList.Count) do
 if TCategory(aList[I]).Description=SearchStr then
 Result:= TCategory(aList[I])
 else Inc(I);
end;

➤ Listing 4: Sequentially searching a list for a value

procedure Tform.FormDestroy(Sender: TObject);
var I: LongInt;
begin
 for I:=0 to aList.Count-1 do
 TObject(aList[I]).Free;
 aList.Free
end;

➤ Listing 5: Using polymorphism to free items

October 1996 The Delphi Magazine 49

	TList Basics
	Database Applications
	Is It Worth It?
	A Few Final Hints

